Nitrogen-doped porous carbon materials generated via conjugated microporous polymer precursors for CO2 capture and energy storage
نویسندگان
چکیده
Heteroatom doping and well-tuned porosity are regarded as two important factors of porous carbon materials (PCMs) for various applications. However, it is still difficult to tune a single variable while retaining the other factors unchanged, which restricts rational and systematic research on PCMs. In this work, in situ nitrogen-doped porous carbon material (NPCM-1) and its non-doped analogue PCM-1 were prepared by direct pyrolysis of conjugated microporous polymer precursors (TCMP-1 and CMP-1 respectively) with the same skeleton structure. It was found that the CO2 adsorption capability of the PCMs was significantly enhanced compared with their CMP precursors thanks to the optimized pore configuration. Meanwhile, NPCM-1 exhibits much better performance in supercapacitive energy storage than PCM-1 even though these two PCMs possess comparable porosity properties, which is probably due to the much improved electrical conductivity and wettability with the electrolytes because of the introduction of nitrogen doping. Thus, this work provides a valuable insight into the design and preparation of high performance PCMs for CO2 capture and energy storage applications.
منابع مشابه
Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer
Conjugated microporous polymers are a new class of porous materials with an extended π-conjugation in an amorphous organic framework. Owing to the wide-ranging flexibility in the choice and design of components and the available control of pore parameters, these polymers can be tailored for use in various applications, such as gas storage, electronics and catalysis. Here we report a class of co...
متن کاملAssessment of the role of micropore size and N-doping in CO2 capture by porous carbons.
The role of micropore size and N-doping in CO2 capture by microporous carbons has been investigated by analyzing the CO2 adsorption properties of two types of activated carbons with analogous textural properties: (a) N-free carbon microspheres and (b) N-doped carbon microspheres. Both materials exhibit a porosity made up exclusively of micropores ranging in size between <0.6 nm in the case of t...
متن کاملOne-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture
The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source. Both pore forming and nitrogen doping simultaneously proceed during the process, obviously superior to conventional chemical activation. The as-p...
متن کاملMicroporous sulfur-doped carbon from thienyl-based polymer network precursors.
Porous sulfur-doped carbon was synthesised by using a thienyl-based polymer network as a precursor. The sulfur amount varies from 5-23 m% while the materials show microporosity with BET surface areas of up to 711 m(2) g(-1).
متن کاملCarbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores
CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017